Роль в организме человека сера – медицинская и кормовая для человека, препараты с очищенной для приема внутрь, лечение горючей новорожденных, как принимать от грыжи

Роль серы в организме человека. Источники и нормы

Сера является необходимым для организма микроэлементом, без которого невозможен нормальный рост ногтей, волос и кожи. Поэтому за серой закрепилось меткое прозвище — «минерал красоты».

Полезные факты, связанные с серой

Сера играет одну из важнейших ролей в организме человека, поскольку является незаменимым звеном в строении клеток, хрящевой, костной и нервной ткани, тканей органов, а также в росте ногтей, кожи и волос человека.

Сера составляет 0.25 процентов от общей массы человеческого тела.

Сера принимает участие в обменных процессах и способствует их нормальному прохождению.

Этот элемент является составной частью ряда гормонов, ферментов, витаминов, аминокислот и гормонов.

Сера незаменима для поддержания кислородного баланса.

Стабилизирует работу НС.

Нормализует содержание сахара в крови.

Действует как противоаллерген и повышает иммунитет.

Лучшей усвояемости серы способствует железо, фтор, а ухудшают её усвоение такие элементы как селен, барий, молибден, свинец и мышьяк.

При каких заболеваниях применяется сера?

Аллергия

Сера – незаменимый макроэлемент, который входит в состав всех без исключения белков в живом организме. Она является составляющей частью клеточных структур и тканей, кожных покровов, волос и ногтей.

Сера есть структурной единицей таких аминокислот, как цистеин, цистин и метионин. В этих соединениях находится большая ее часть. Остальная же существует в форме сульфатов и связана с другими клеточными веществами. Наибольшее количество серы можно найти в тканях с высоким содержанием белка. Невозможны без нее такие белковые соединения как коллагены и эластины. Именно эти белки отвечают за качество кожи, ногтей, волос, зубов. Они гарантируют мышцам подвижность и эластичность, придают тканям форму, плотность и упругость.

Суточная потребность в сере у взрослого человека — 500-1200 мг. Ее легко получить с пищей. Продукты, содержащие серу, ежедневно бывают на нашем столе и проблем с пополнением этого вещества не возникает.

При повышенных физических нагрузках или в период активного роста молодого организма суточная потребность в сере возрастает. 500-3000 мг этого макроэлемента требуется спортсменам, подросткам и людям, выполняющим тяжелую физическую работу.

Функции серы в человеческом организме

Сера ежедневно попадает в организм вместе с продуктами питания. Но желудочно-кишечный тракт имеет ограниченную проницаемость к элементарной сере. Под воздействием желудочного сока сера превращается в трудноусваиваемый и трудновыводимый мукополисахарид – сернокислый хондроитин.

Процент проникновения серы через кожные покровы значительно выше. Через эпидермис сера проникает в более глубокие слои кожи, где превращается в сульфаты и сульфиды. Затем эти соединения попадают в русло крови и ее током разносятся по всему организму. Выводятся производные серы преимущественно через почки.

Серу называют «элементом красоты», поскольку ее присутствие в эпидермисе, волосах и ногтях способствует их здоровому состоянию. Именно сера гарантирует выработку организмом собственного коллагена – вещества, которое не дает коже стареть.

Функции серы разнообразны:

участие во всех обменных процессах; поддержание кислородного баланса; поддержание на нужном уровне сахар в крови; повышение иммунитета; оказывает противоаллергическое воздействие на рецепторы; участвует в формировании тканей и влияет на их состояние; является компонентом ряда витаминов, аминокислот и гормонов, участвует в индукции витаминов, влияющих на состояние нервной системы; оказывает ранозаживляющий, прот

Сера — Википедия

Сера
← Фосфор | Хлор →
светло-жёлтое порошкообразное вещество
Sulfur-sample.jpg
Название, символ, номер Сера / Sulfur (S), 16
Атомная масса
(молярная масса)
[32,059; 32,076][комм. 1][1] а. е. м. (г/моль)
Электронная конфигурация [Ne] 3s2 3p4
Радиус атома 127 пм
Ковалентный радиус 102 пм
Радиус иона 30 (+6e) 184 (−2e) пм
Электроотрицательность 2,58 (шкала Полинга)
Электродный потенциал 0
Степени окисления +6, +4, +2, +1, 0, −1, −2
Энергия ионизации
(первый электрон)
 999,0 (10,35) кДж/моль (эВ)
Плотность (при н. у.) 2,070 г/см³
Температура плавления 386 К (112,85 °С)
Температура кипения 717,824 К (444,67 °С)
Уд. теплота плавления 1,23 кДж/моль
Уд. теплота испарения 10,5 кДж/моль
Молярная теплоёмкость 22,61[2] Дж/(K·моль)
Молярный объём 15,5 см³/моль
Структура решётки орторомбическая
Параметры решётки a = 10,437, b = 12,845, c = 24,369 Å
Теплопроводность (300 K) 0,27 Вт/(м·К)
Номер CAS 7704-34-9
Sulfur Spectrum.jpg

Се́ра — элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде.

Природная Сера состоит из четырёх стабильных изотопов:

32S (95,02 %), 33S (0,75 %), 34S (4,21 %), 36S (0,02 %).

Получены также искусственные радиоактивные изотопы

31S (T½ = 2,4 с), 35S (T½ = 87,1 сут), 37S (Т½

= 5,04 мин) и другие.

Происхождение названия[править | править код]

Слово «сера», известное в древнерусском языке с XV века, заимствовано из старославянского «сѣра» — «сера, смола», вообще «горючее вещество, жир». Этимология слова не выяснена до настоящих времен, поскольку первоначальное общеславянское название вещества утрачено и слово дошло до современного русского языка в искажённом виде[3].

По предположению Фасмера[4], «сера» восходит к лат. сera — «воск» или лат. serum — «сыворотка».

Латинское sulfur (происходящее из эллинизированного написания этимологического sulpur), предположительно, восходит к индоевропейскому корню *swelp — «гореть»[5].

История открытия[править | править код]

Точное время открытия серы не установлено, но этот элемент использовался до нашей эры.

Сера использовалась жрецами в составе священных курений при религиозных обрядах. Она считалась произведением сверхчеловеческих существ из мира духов или подземных богов.

Очень давно сера стала применяться в составе различных горючих смесей для военных целей. Уже у Гомера описаны «сернистые испарения», смертельное действие выделений горящей серы. Сера, вероятно, входила в состав «греческого огня», наводившего ужас на противников.

Около VIII века китайцы стали использовать её в пиротехнических смесях, в частности, в смеси типа пороха. Горючесть серы, лёгкость, с которой она соединяется с металлами с образованием сульфидов (например, на поверхности кусков металла), объясняют то, что её считали «принципом горючести» и обязательной составной частью металлических руд.

Пресвитер Теофил (XII век) описывает способ окислительного обжига сульфидной медной руды, известный, вероятно, ещё в древнем Египте.

В период арабской алхимии возникла ртутно-серная теория состава металлов, согласно которой сера почиталась обязательной составной частью (отцом) всех металлов.

В дальнейшем она стала одним из трёх принципов алхимиков, а позднее «принцип горючести» явился основой теории флогистона. Элементарную природу серы установил Лавуазье в своих опытах по сжиганию.

С введением пороха в Европе началось развитие добычи природной серы, а также разработка способа получения её из пиритов; последний был распространён в древней Руси. Впервые в литературе он описан у Агриколы.

Sulfur Spectrum.jpg Sulfur Spectrum.jpg

Большие скопления самородной серы (с содержанием > 25 %) редки, они встречаются в местах вулканической активности, им сопутствуют сернистые фумаролы и сернистые воды

[6].

Серная руда разрабатывается в месторождениях самородной серы, добывается из сульфидных руд и промышленных газов[7].

Серные бактерии могут окислять сероводород от гниющих органических остатков до серы и накапливать её[8].

Природные минералы серы[править | править код]

Сера является шестнадцатым по химической распространённости элементом в земной коре. Встречается в свободном (самородном) состоянии и в связанном виде.

Важнейшие природные минералы серы: FeS2 — железный колчедан, или пирит, ZnS — цинковая обманка, или сфалерит (вюрцит), PbS — свинцовый блеск, или галенит, HgS — киноварь, Sb2S3 — антимонит, Cu2S — халькозин, CuS — ковеллин, CuFeS

2 — халькопирит. Кроме того, сера присутствует в нефти, природном угле, природных газах и сланцах. Сера — шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обусловливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.

В древности и в средние века серу добывали, вкапывая в землю большой глиняный горшок, на который ставили другой, с отверстием в дне. Последний заполняли породой, содержащей серу, и затем нагревали. Сера плавилась и стекала в нижний горшок.

В настоящее время серу получают главным образом путём выплавки самородной серы непосредственно в местах её залегания под землёй. Серные руды добывают разными способами — в зависимости от условий залегания. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности её самовозгорания.

При добыче руды открытым способом экскаваторами снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на сероплавильный завод, где из концентрата извлекают серу.

В 1890 г. Герман Фраш предложил плавить серу под землёй и через скважины, подобные нефтяным, выкачивать её на поверхность. Сравнительно невысокая (113 °C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Sulfur Spectrum.jpg Гранулированная сера

Также сера в больших количествах содержится в природном газе в газообразном состоянии (в виде сероводорода, сернистого ангидрида). При добыче она откладывается на стенках труб и оборудования, выводя их из строя. Поэтому её улавливают из газа как можно быстрее после добычи. Полученная химически чистая мелкодисперсная сера является идеальным сырьём для химической и резиновой промышленности.

Серу из природного сернистого газа получают методом Клауса. Для этого используются так называемые серные ямы, где происходит дегазация серы, на выходе получают модифицированную серу — продукт, широко использующийся в производстве асфальта. Технологические установки для получения серы обычно включают в себя ямы недегазированной серы, ямы дегазации, ямы хранения дегазированной серы, а также налив жидкой серы и склад комовой серы. Стены ямы обычно делают из кирпича, дно заливают бетоном, а сверху закрывают яму алюминиевой крышей. Так как сера — это весьма агрессивная среда, ямы периодически приходится полностью реконструировать.

Крупнейшее месторождение самородной серы вулканического происхождения находится на острове Итуруп с запасами категории A+B+C1 — 4227 тыс. тонн и категории C2 — 895 тыс. тонн, что достаточно для строительства предприятия мощностью 200 тыс. тонн гранулированной серы в год.

Sulfur Spectrum.jpg Склад серы у химического цеха ММСК (1960-е гг.)

Производители[править | править код]

Sulfur Spectrum.jpg Традиционный и опасный вид добычи серы на вулкане Иджен Восточной Явы, Индонезия. То, что выглядит как водяной пар, является в действительности высококонцентрированными испарениями сероводорода и диоксида серы. 2015 год[9]

Ввиду высокой потребности Красной Армии в боеприпасах Постановлением Президиума ВСНХ от 19 декабря 1930 решено «включить строительство серных предприятий в число ударных первоочередных строек». В 1930—1931 годах были разведаны и запущены в производство 2 месторождения в Средней Азии — Каракумский завод самородной серы (3 тысячи тонн в год) и серный рудник Шорсу. Богатый (25 % каменной серы в руде) рудник Шорсу начал разрабатываться шахтным способом, а затем открытым. После ввода в строй этих рудников, в 1932 году был построен Калатинский завод газовой серы (4 тысячи тонн в год), а также несколько заводов в РСФСР. Основанный в 1939 году в Оренбургской области Медногорский медно-серный комбинат (ММСК)[10] до 1986 года был крупнейшим производителем серы в СССР: в середине 1950-х годов он выпускал до 250—280 тысяч тонн в год, что составляло 80 % серы, производившейся в стране.

…Утром мы были на медносерном заводе. Около 80 процентов серы, выпускаемой в нашей стране, добывается на этом предприятии.

— До пятидесятого года стране приходилось импортировать много серы из-за границы. Теперь нужда в импорте серы отпала, — говорил директор завода Александр Адольфович Бурба. — Но завод продолжает расширяться. Начали строить цех производства серной кислоты.

С высокой эстакады застывшим потоком повис ярко-жёлтый массив серы. То, что мы видим в небольших количествах в стеклянных баночках в лабораториях, здесь, на заводском дворе, лежало огромными глыбами».

А. Софронов. В Оренбургских степях (журнал «Огонёк», 1956)[11]

В начале XXI века основными производителями серы в России являются предприятия ОАО Газпром: ООО Газпром добыча Астрахань и ООО Газпром добыча Оренбург, получающие её как побочный продукт при очистке газа[12].

Товарные формы[править | править код]

В промышленности реализовано получение серы в различных товарных формах[13][с. 193—196]. Выбор той или иной формы определяется требованиями заказчика.

Комовая сера до начала 1970-х годов была основным видом серы, выпускаемым промышленностью СССР. Её получение технологически просто и осуществляется подачей жидкой серы по обогреваемому трубопроводу на склад, где производится заливка серных блоков. Застывшие блоки высотой 1—3 метра разрушают на более мелкие куски и транспортируют заказчику. Метод, однако, имеет недостатки: невысокое качество серы, потери на пыль и крошку при рыхлении и погрузке, сложность автоматизации.

Жидкую серу хранят в обогреваемых резервуарах и транспортируют в цистернах. Транспорт жидкой серы более выгоден, чем её плавление на месте. Достоинства получения жидкой серы — отсутствие потерь и высокая чистота. Недостатки — опасность возгорания, траты на обогрев цистерн.

Формованная сера бывает чешуйчатая и пластинчатая. Чешуйчатую серу начали производить на НПЗ в 1950-х годах. Для получения используют вращающийся барабан, внутри он охлаждается водой, а снаружи кристаллизуется сера в виде чешуек толщиной 0,5—0,7 мм. В начале 1980-х годов вместо чешуйчатой стали выпускать пластинчатую серу. На движущуюся ленту подается расплав серы, который охлаждается по мере движения ленты. На выходе образуется застывший лист серы, который ломают с образованием пластинок. Сегодня эта технология считается устаревшей, хотя около 40 % канадской серы экспортируется именно в таком виде ввиду больших капиталовложений в установки для её получения.

Гранулированную серу получают различными методами.

  • Водная грануляция (пеллетирование) разработана в 1964 году английской фирмой «Эллиот». Процесс основан на быстром охлаждении капель серы, падающих в воду. Первое внедрение технологии — процесс «Салпел» в 1965 году. Крупнейший завод позже был построен в Саудовской Аравии в 1986 году. На нём каждая из трёх установок может производить до 3500 т гранулированной серы в сутки. Недостаток технологии — ограниченное качество гранул серы, обладающих неправильной формой и повышенной хрупкостью.
  • Грануляция в кипящем слое разработана французской компанией «Перломатик». Капли жидкой серы подаются вверх. Они охлаждаются водой и воздухом и смачиваются жидкой серой, которая застывает на образующихся гранулах тонким слоем. Конечный размер гранул 4—7 мм. Более прогрессивным является процесс «Прокор», который широко внедрён в Канаде. В нём применяются барабанные грануляторы. Однако этот процесс очень сложен в управлении.
  • Воздушно-башенная грануляция разработана и внедрена в Финляндии в 1962 году. Расплав серы диспергируется с помощью сжатого воздуха в верхней части грануляционной башни. Капли падают и затвердевают, попадая на транспортную ленту.

Молотая сера является продуктом размола комовой или гранулированной серы. Степень измельчения может быть различной. Его проводят сначала в дробилке, потом в мельнице. Таким способом возможно получение очень высокодисперсной серы с размером частиц менее 2 мкм. Грануляцию порошковой серы проводят в прессах. Необходимо использование связующих добавок, в качестве которых используют битумы, стеариновую кислоту, жирные кислоты в виде водной эмульсии с триэтаноламином и другие[14].

Крупнейшими производителями молотой серы в России являются предприятия ООО «Каспийгаз» и АО «Сера».

Коллоидная сера — это разновидность молотой серы с размером частиц менее 20 мкм. Её применяют в сельском хозяйстве для борьбы с вредителями и в медицине как противовоспалительные и дезинфицирующие средства. Коллоидную серу получают различными способами.

  • Способ получения путём размола широко распространён, поскольку не предъявляет высоких требований к сырью. Одним из лидеров по этой технологии является фирма «Байер».
  • Способ получения из расплавленной серы или её паров был внедрён в США в 1925 году. Технология подразумевает смешение с бентонитом, полученная смесь образует устойчивые суспензии с водой. Однако содержание серы в растворе невелико (не более 25 %).
  • Экстракционные способы получения основаны на растворении серы в органических растворителях и дальнейшем испарении последних. Однако они не получили широкого распространения.

Высокочистую серу получают используя химические, дистилляционные и кристаллизационные методы. Её применяют в электронной технике, при изготовлении оптических приборов, люминофоров, в производстве фармацевтических и косметических препаратов — лосьонов, мазей, средств против кожных болезней.

Примерно половина производимой серы используется в производстве серной кислоты.

Серу применяют для вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная — лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента — для получения серобетона. Сера находит применение для производства пиротехнических составов, ранее использовалась в производстве пороха, применяется для производства спичек. Серная лампа — источник белого света, очень близкого к солнечному, с высоким КПД.

Физические свойства[править | править код]

Sulfur Spectrum.jpg Природный сросток кристаллов самородной серы Sulfur Spectrum.jpg

Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера — хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). Формулу серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами. В воде сера нерастворима, но хорошо растворяется в органических растворителях, например, в сероуглероде, скипидаре.

Плавление серы сопровождается заметным увеличением объёма (примерно 15 %). Расплавленная сера представляет собой жёлтую легкоподвижную жидкость, которая выше 160 °C превращается в очень вязкую тёмно-коричневую массу. Наибольшую вязкость расплав серы приобретает при температуре 190 °C; дальнейшее повышение температуры сопровождается уменьшением вязкости и выше 300 °C расплавленная сера снова становится подвижной. Это связано с тем, что при нагревании серы она постепенно полимеризуется, увеличивая длину цепочки с повышением температуры. При нагревании серы свыше 190 °C полимерные звенья начинают рушиться.

Сера может служить простейшим примером электрета. При трении сера приобретает сильный отрицательный заряд[14].

Фазовая диаграмма серы[править | править код]

Фазовая диаграмма элементарной серы.
Sp — ромбическая сера; Sм — моноклинная сера; Sж — жидкая сера; Sп — пары серы.

Элементарная кристаллическая сера может существовать в виде двух аллотропных модификаций (энантиотропия серы) — ромбической и моноклинной, — то есть сера диморфна, поэтому для элементарной серы возможно существование четырёх фаз: твёрдой ромбической, твёрдой моноклинной, жидкой и газообразной, а на фазовой диаграмме серы (см. рисунок; для давления использован логарифмический масштаб) имеются два поля твёрдых фаз: область ромбической серы и область существования моноклинной серы (треугольник АВС)[15].

На фазовой диаграмме серы[15]:

  • DA — линия возгонки ромбической серы Sp, описывающая зависимость давления насыщенного пара серы Sп от температуры над твёрдой ромбической серой;
  • AС — линия возгонки моноклинной серы Sм, описывающая зависимость давления насыщенного пара серы от температуры над твёрдой моноклинной серой;
  • СF — линия испарения жидкой серы Sж, описывающая зависимость давления насыщенного пара серы от температуры над расплавом серы;
  • AB — линия полиморфного превращения сера ромбическая <—> сера моноклинная, описывающая зависимость температуры фазового перехода между ромбической и моноклинной серой от давления;
  • ВЕ — линия плавления ромбической серы, описывающая зависимость температуры плавления ромбической серы от давления;
  • ВЕ — линия плавления моноклинной серы, описывающая зависимость температуры плавления моноклинной серы от давления.

Пунктирные линии отражают возможность существования метастабильных фаз, которые наблюдаются при резком изменении температуры:

На фазовой диаграмме серы имеются три стабильные тройные точки и одна метастабильная, каждая из которых отвечает условиям термодинамического равновесия трёх фаз[15]:

  • точка А (дополнительная): равновесие твёрдой ромбической, твёрдой моноклинной и газообразной серы;
  • точка В (дополнительная): равновесие твёрдой ромбической, твёрдой моноклинной и жидкой серы;
  • точка С (основная): равновесие твёрдой моноклинной, расплавленной и газообразной серы;
  • точка О (метастабильная): метастабильное равновесие между перегретой твёрдой ромбической, переохлаждённой жидкой и газообразной серой.

Как показывает фазовая диаграмма, ромбическая сера не может одновременно находиться в равновесии с расплавом и парами серы[16], поэтому в основной тройной точке (когда равновесные фазы находятся в разных агрегатных состояниях) твёрдая фаза представлена моноклинной серой. Метастабильная тройная точка появляется вследствие низкой скорости превращения одной кристаллической модификации серы в другую[17].

Химические свойства[править | править код]

На воздухе сера горит, образуя сернистый газ — бесцветный газ с резким запахом:

S+O2→SO2{\displaystyle {\mathsf {S+O_{2}\rightarrow SO_{2}}}}

С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S2O2, молекулярной серы S2, свободных атомов серы S и свободных радикалов моноокиси серы SO[18].

Восстановительные свойства серы проявляются в реакциях серы и с другими неметаллами, однако при комнатной температуре сера реагирует только со фтором:

S+3F2→SF6{\displaystyle {\mathsf {S+3F_{2}\rightarrow SF_{6}}}}

Расплав серы реагирует с хлором, при этом возможно образование двух низших хлоридов (дихлорид серы и дитиодихлорид)[19]:

2S+Cl2→S2Cl2{\displaystyle {\mathsf {2S+Cl_{2}\rightarrow S_{2}Cl_{2}}}}
S+Cl2→SCl2{\displaystyle {\mathsf {S+Cl_{2}\rightarrow SCl_{2}}}}

При избытке серы также образуются разнообразные дихлориды полисеры типа SnCl2.[20]

При нагревании сера также реагирует с фосфором, образуя смесь сульфидов фосфора[21], среди которых — высший сульфид P2S5:

5S+2P→to P2S5{\displaystyle {\mathsf {5S+2P{\xrightarrow {t^{o}}}\ P_{2}S_{5}}}}

Кроме того, при нагревании сера реагирует с водородом, углеродом, кремнием:

S+h3→to h3S{\displaystyle {\mathsf {S+H_{2}{\xrightarrow {t^{o}}}\ H_{2}S}}} (сероводород)
C+2S→to CS2{\displaystyle {\mathsf {C+2S{\xrightarrow {t^{o}}}\ CS_{2}}}} (сероуглерод)
Si+2S→to SiS2{\displaystyle {\mathsf {Si+2S{\xrightarrow {t^{o}}}\ SiS_{2}}}} (сульфид кремния)

При нагревании сера взаимодействует со многими металлами, часто — весьма бурно. Иногда смесь металла с серой загорается при поджигании. При этом взаимодействии образуются сульфиды:

2Na+S→to Na2S{\displaystyle {\mathsf {2Na+S{\xrightarrow {t^{o}}}\ Na_{2}S}}}
Ca+S→to CaS{\displaystyle {\mathsf {Ca+S{\xrightarrow {t^{o}}}\ CaS}}}
2Al+3S→to Al2S3{\displaystyle {\mathsf {2Al+3S{\xrightarrow {t^{o}}}\ Al_{2}S_{3}}}}
Fe+S→to FeS{\displaystyle {\mathsf {Fe+S{\xrightarrow {t^{o}}}\ FeS}}}.

Растворы сульфидов щелочных металлов реагируют с серой с образованием полисульфидов:

Na2S+S→Na2S2{\displaystyle {\mathsf {Na_{2}S+S\rightarrow Na_{2}S_{2}}}}

Из сложных веществ следует отметить прежде всего реакцию серы с расплавленной щёлочью, в которой сера диспропорционирует аналогично хлору:

3S+6KOH{\displaystyle {\mathsf {3S+6KOH}}}(расплав)→to K2SO3+2K2S+3h3O{\displaystyle {\mathsf {{\xrightarrow {t^{o}}}\ K_{2}SO_{3}+2K_{2}S+3H_{2}O}}}.

Полученный сплав называется серной печенью.

С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании:

S+6HNO3{\displaystyle {\mathsf {S+6HNO_{3}}}}(конц.)→to h3SO4+6N

роль, нехватка и избыток, сера в продуктах

сера в продуктах

Сера – элемент таблицы Менделеева, но известна она людям издавна – мы называем это время доисторическим.

Шаманы и жрецы разных религиозных культов использовали серу в своих обрядах: её пары обладают удушающим действием, но люди верили, что это священные курения, связывающие их с богами.

Потом сера понадобилась для изготовления оружия: тот самый «греческий огонь», о котором рассказывается в исторических романах и фильмах, вряд ли мог бы наводить такой ужас на неприятельские армии, не будь в нём серы – это описано ещё у Гомера. Ну а китайцы придумали порох и пиротехнику: они тоже воевали, но и веселиться любили.

В Древнем Египте серу использовали при обжиге руды; арабские алхимики считали её «отцом всех металлов», хотя к металлам она не относится; алхимики Европы тоже любили проводить с ней опыты.

Что такое сера, первым понял химик Лавуазье: он установил её элементарную неметаллическую природу, и вскоре в Европе стали активно добывать серу, а также искать способы её получения – всем странам нужен был порох.

И всё-таки, когда появилась сера, и как люди начали её использовать — учёные точно сказать не могут.

Сера в организме: роль

В организме человека сера присутствует постоянно, как и в организмах животных и растений. Серу называют минералом «красоты», так как при её дефиците волосы начинают ломаться и теряют блеск, а кожа блёкнет и стареет.

Синтез белков, необходимых для построения соединительных тканей организма, в свою очередь, не может происходить без серы; она является составной частью аминокислот – цистеиновой, цистиновой и метиониновой.

Кератин, являющийся элементом клеток кожи, волос и ногтей, тоже включает в себя много серы; она же входит в состав инсулина, без которого невозможен нормальный углеводный обмен. В углеводах тоже есть сера – например, в гепарине, поддерживающем кровь в жидком состоянии.

В организме сера участвует во множестве необходимых для жизни процессов, взаимодействуя с витаминами Н, группы В, поддерживающими здоровье нервной системы и обмен веществ, а также витамином N – липоевой кислотой, снабжающей энергией головной мозг и обеспечивающей усвоение глюкозы мышцами.

Клеточное дыхание и выработка желчи тоже происходят с участием серы; таким образом, она поддерживает равновесие во всех клетках, органах и системах нашего организма.

Сера участвует в формировании хрящевой ткани; влияет на рост, гибкость и эластичность костей; укрепляет мышечный каркас – это особенно важно для подростков; останавливает развивающийся сколиоз; при артритах, растяжениях, миозите, бурсите уменьшает боли и воспаления, снимает судороги.


Организму нужно вымывать шлаки и токсины из всех клеток – сера способствует этому: она повышает проницаемость мембран и нейтрализует токсичные вещества, накопленные внутри клеток, а полезным веществам, в то же время, помогает поступать в клетки. При аллергических заболеваниях сера очень важна, поэтому пациентам часто назначают серосодержащие препараты: это опять же связано с её антитоксическим действием – чужеродное вещество вовремя выводится из клетки, и аллергическая реакция не возникает.

Поскольку сера участвует в формировании белка и является компонентом многих аминокислот, она способствует укреплению антиоксидантной защиты. Аминокислоты, содержащие серу, синтезируют белки, обеспечивающие эффективную работу иммунной системы, защищающей нас от множества агрессивных воздействий.

Многие ферменты, гормоны, витамины тоже синтезируются в организме при участии серы; благодаря ей, поддерживается нормальный уровень сахара в крови, поэтому больным сахарным диабетом могут вводить серу, чтобы снизить потребность в инсулине.

Сера в продуктах

Для того, чтобы организм получал достаточно серы, не следует исключать из рациона продукты животного происхождения – особенно это касается любителей низкокалорийных диет и вегетарианцев.

В продуктах животного происхождения серы больше: это мясо, птица, яйца, морепродукты, рыба, молочные продукты, сыры; но и в растительных продуктах её немало – в крупах, злаковых, бобовых, яблоках, винограде, крыжовнике, сливах, луке, чесноке, спарже, капусте, редьке, редисе, хрене, горчице, перце чили, крапиве, шпинате, орехах и даже в хлебе.

Большинство учёных считает, что для обеспечения организма серой хватает обычного рациона, а рекомендуемые нормы её потребления не установлены. В других источниках, однако, говорится, что в сутки взрослому человеку требуется от 4 до 6 г серы – поэтому нужно чаще пить минеральную воду с сульфатами.

Нехватка серы

Нехватка серы в организме всё же бывает, хотя клинических данных о её симптомах почему-то до сих пор нет. Зато экспериментальные данные есть, и они говорят о том, что недостаток серы может тормозить рост клеток; снижать репродуктивную функцию; способствовать развитию заболеваний печени, суставов и кожи; нарушать обменные процессы – пигментный обмен, содержание сахара в крови и т.д.

При дефиците серы начинают ломаться ногти; волосы и кожа тускнеют; суставы начинают болеть; возникает гипергликемия. Причины дефицита серы учёным тоже не до конца ясны, но одной из них может являться дисбактериоз; питание белковой пищей, содержащей мало необходимых аминокислот, тоже может вызвать такое состояние.


Избыток серы

Об избытке серы в организме тоже нет клинических данных. Сера, содержащаяся в продуктах питания, считается нетоксичной, но её химические соединения могут вызывать отравления, и даже со смертельным исходом – это сернистый газ, сероводород и т.д.

Вдыхание паров сероводорода быстро вызывает судороги, человек теряет сознание и перестаёт дышать. Если он остаётся жив, то может стать инвалидом – с параличами, нарушениями психики, работы лёгких и ЖКТ; либо страдает от сильных головных болей и других последствий отравления.

Специалисты считают, что избыточное поступление серы в организм в последние годы значительно увеличилось: в продукты питания добавляют сульфиты – для того, чтобы продлить срок их хранения. Больше всего их в копчёных продуктах, так любимых нашими соотечественниками; в готовых салатах, которые хозяйки покупают в супермаркетах; в пиве, которое пьют даже школьники; в окрашенных винах и уксусе; картофеле и свежих овощах – при их выращивании используются удобрения. Тяжёлых отравлений такие дозы сульфитов не вызывают, но они накапливаются в организме, и многие врачи видят здесь связь с увеличением количества больных бронхиальной астмой.

При избытке серы в организме могут проявляться: кожный зуд, сыпь и фурункулы; развивается конъюнктивит и возникают дефекты роговицы, появляется «песок в глазах», глазные яблоки ломит, текут слёзы, глаза раздражает свет; появляется малокровие, слабость, головокружение, головные боли и тошнота; развиваются заболевания верхних дыхательных путей; ослабевает слух; возникают частые расстройства пищеварения, жидкий стул, теряется масса тела; заметно понижается интеллект.

Усвоению серы в организме способствуют фтор и железо, а замедляют его – селен, молибден, свинец, барий, мышьяк.

Учёным давно понятно, что сера играет очень важную роль в организме человека, и нарушения её обмена могут довольно быстро разрушать здоровье, но результатов клинических исследований на эту тему почти нет, так что множество возникающих острых и хронических заболеваний никак не связываются медиками с нехваткой или избытком этого элемента.

Между тем, при нехватке серы надо просто употреблять больше натурального мяса, морепродуктов, яиц, сыра, бобовых, капусты и других богатых ею продуктов, а также принимать БАД, в которых много метионина, биотина, тиамина и других серосодержащих веществ.

Специалисты всё же считают, что обычного питания должно хватать, однако непонятно, что именно под этим подразумевается. Конечно, если бы наш организм получал все продукты, содержащие серу, в натуральном виде, как это было в питании наших бабушек и дедушек, то проблемы были бы решены – но мы питаемся по-другому: консервами, полуфабрикатами, готовыми продуктами – из магазина – прямо на стол.

Можно, конечно, переложить всю ответственность на клиницистов, не имеющих результатов исследований, и обвинять их в том, что у нас хрупкие ногти, бледная кожа и тусклые волосы, а можно начать улучшать своё питание прямо сегодня – выбор за нами.

Гатаулина Галина
для женского журнала InFlora.ru

При использовании и перепечатке материала активная ссылка на женский онлайн журнал InFlora.ru обязательна

Сера

Данные о токсичности серы, содержащейся в пищевых продуктах, в литературе отсутствуют. Однако существуют описания клиники острых и хронических отравлений соединениями серы, такими как сероводород, сероуглерод, сернистый газ.

При высоких концентрациях сероводорода во вдыхаемом воздухе, клиническая картина интоксикации развивается очень быстро, в течение нескольких минут возникают судороги, потеря сознания, остановка дыхания. В дальнейшем последствия перенесенного отравления могут проявляться стойкими головными болями, нарушениями психики, параличами, расстройствами функций системы дыхания и желудочно-кишечного тракта.

Установлено, что парентеральное введение мелко измельченной серы в масляном растворе в количестве 1-2 мл сопровождается гипертермией с гиперлейкоцитозом и гипогликемией. Полагают, что при парентеральном введении токсичность ионов серы в 200 раз выше, чем ионов хлора.

Токсичность соединений серы, попавших в желудочно-кишечный тракт, связана с их превращением кишечной микрофлорой в сульфид водорода, весьма токсичным соединением.

В случаях смертельных исходов после отравления серой при вскрытии, отмечают признаки эмфиземы легких, воспаления мозга, острого катарального энтерита, некроза печени, кровоизлияния (петехии) в миокард.

При хронических интоксикациях (сероуглерод, сернистый газ), наблюдаются нарушения психики, органические и функциональные изменения нервной системы, слабость мышц, ухудшение зрения и разнообразные расстройства деятельности других систем организма.

В последние десятилетия одним из источников избыточного поступления серы в организм человека стали серосодержащие соединения (сульфиты), которые добавляются во многие пищевые продукты, алкогольные и безалкогольные напитки в качестве консервантов. Особенно много сульфитов в копченостях, картофеле, свежих овощах, пиве, сидре, готовых салатах, уксусе, красителях вина. Возможно, увеличивающееся потребление сульфитов отчасти повинно в росте заболеваемости бронхиальной астмой. Известно, напр., что 10% больных бронхиальной астмой проявляют повышенную чувствительность к сульфитам (т.е., являются сенсибилизированными к сульфиту). Для снижения отрицательного действия сульфитов на организм рекомендуется увеличивать содержание в рационе сыров, яиц, жирного мяса, птицы.

Основные причины избытка серы:

  • Избыточное поступление серы и ее соединений.
  • Нарушение регуляции обмена серы.

Основные проявления избытка серы:

  • Кожный зуд, сыпи, фурункулез.
  • Покраснение и опухание конъюнктивы.
  • Появление мелких точечных дефектов на роговице.
  • Ломота в бровях и глазных яблоках, ощущением песка в глазах.
  • Светобоязнь, слезотечение.
  • Общая слабость, головные боли, головокружение, тошнота.
  • Катар верхних дыхательных путей, бронхит.
  • Ослабление слуха.
  • Расстройства пищеварения, поносы, снижение массы тела.
  • Анемия.
  • Судороги и потеря сознания (при острой интоксикации).
  • Психические нарушения, понижение интеллекта.

Author: admin

Отправить ответ

avatar
  Подписаться  
Уведомление о