Что такое никель и для чего он нужен – Никель микроэлемент: свойства, вред и польза для здоровья человека | ФИТНЕС | ЗДОРОВЬЕ | СПОРТИВНОЕ ПИТАНИЕ | ВИТАМИНЫ | ТРЕНИРОВКИ | НОВОСТИ

Содержание

Где используется никель в промышленности. Что такое никель и для чего он нужен


Никель был открыт в 1751 г., однако в течение 50-70 лет его промышленное производство и потребление не получали развития. Только в 1825-1826 гг. в Швеции было организовано первое в заметных количествах промышленное получение никеля. Развитие никелевой промышленности длительное время тормозило то, что отсутствовали рациональные методы переработки известных в то время никелевых руд (мышьяковистые и сульфидные никелевые руды в Швеции и Германии).
Тогда никель нужен был только для получения медноникелевого сплава, необходимого для чеканки разменной монеты. Такие сплавы изготовляли в Индии, Китае и Средней Азии очень давно, хотя о существовании никеля еще не было известно.
Рост производства никеля начался только в конце XIX и начале XX вв., когда стали известны многие высокие физические и технические свойства этого металла и были открыты богатые залежи никеля в Новой Каледонии (1865 г.) и в Канаде.
Среднегодовое производство никеля в капиталистических странах. по пятилетиям XIX и XX вв. приведено ниже, тыс. т:

В последнее время никель стал одним из необходимых в промышленности металлов, так как он обладает многими физическими к химическими свойствами, выгодно отличающими его от некоторых других цветных металлов.

Никель тверд, гибок, тягуч и ковок; он допускает все виды обработки; из него можно изготовлять тончайшие листы, трубки, ленту. Никель тугоплавок, поэтому широко применяется в технике высоких температур, а также кислотоупорен: не окисляется при длительном хранении на воздухе и даже при нагревании до 500° не дает окалины. Прочность и антикоррозионная стойкость никеля выше, чем других тяжелых цветных металлов. Никель, как железо и кобальт, обладает магнитными свойствами, которые используют для его выделения из руд. Никель образует соединения и сплавы со многими металлами и сообщает им многие разнообразные и очень ценные свойства (повышенная прочность, пластичность, вязкость, кислотостойкость, жаропрочность, высокое омическое сопротивление, магнитные и немагнитные свойства), а также придает им красивый внешний вид. В присутствии некоторых других элементов действие никеля проявляется значительно сильнее, поэтому чаще применяются многокомпонентные сплавы.
Никель неравномерно распределен в земной коре. Концентрированные запасы никелевых руд, пригодных для эксплуатации, встречаются лишь в некоторых районах земного шара.
Основной производитель никеля — Канада (производство никеля в Канаде в последние годы составляет около 80% общего производства никеля в капиталистическом мире). Значительное количество никеля выплавляется в Кубе, Новой Каледонии и Японии. Остальные страны но являются постоянными производителями никеля. Даже такие крупные капиталистические страны, как США, Англия и Франция, почти не имеют собственного производства этого металла. Эти страны в больших количествах импортируют никель из Канады, Кубы и Новой Каледонии. В 1956 г. США ввезли 130 тыс. г и в 1957 г. — 134 тыс. т никеля.
Крупнейшая фирма, занятая производством никеля, — «Интернэшнл никл Ко оф Кэнада Лтд». В 1957 г. заводы фирмы выплавили 132 тыс. т никеля (всеми странами капиталистического мира выплавлено 222 тыс. г).
Данные о производстве никеля в капиталистических странах приведены ниже (содержание никеля в продуктах плавки), тыс. т:

Никель находит применение во многих отраслях промышленного производства: в машиностроении, авиации и ракетной технике, автомобилестроении, химическом машиностроении, электротехнике, приборостроении, химической, текстильной и пищевой промышленности.
Никель широко используется как присадка к другим металлам и в сплавах с другими металлами. Добавка в сталь небольших количеств никеля, иногда вместе с другими металлами, делает ее пластичной, вязкой и жаростойкой.
Хромоникелевые нержавеющие стали, обычно содержащие 6-8% никеля и 18-20% хрома, применяют как антикоррозионные и кислотостойкие материалы в судостроении, при изготовлении химической аппаратуры, посуды и для постройки монументальных сооружений. Надеются нержавеющие стали и с другим составом легирующих элементов.

Никель в сочетании с другими легирующими добавками (хром, молибден, медь) используется для получения никельсодержащих чугунов, обладающих высокой прочностью, износостойкостью и хорошей обрабатываемостью. Никельсодержащие чугуны употребляются для изготовления деталей двигателей внутреннего сгорания, локомотивов, металлорежущих станков, контроллеров и штампов холодной штамповки.
Многие никелевые сплавы отличаются весьма ценными электрическими, термоэлектрическими и магнитными свойствами.
Нихром, содержащий 75-85% никеля, 10-20% хрома

Никель (Ni, Niccolum) — влияние на организм, польза и вред, описание

История никеля

Вслед за кобальтом, история которого началась в саксонских горах и была связана с мифическими персонажами – злобными карликами, всячески мешавшими горнякам добывать руду, никель даже название своё получил от имени озорного горного духа, заменявшего медь на купферникель (дьявольскую медь). Никель был открыт в 1751 году шведом Кронштедтом при изучении красного никелевого колчедана. Чуть позже более чистый никель был получен в серии опытов Бергмана.

Общая характеристика никеля

Никель является элементом X группы IV периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 28 и атомную массу 58,693. Признанное обозначение – Ni (латинское Niccolum).

Физические и химические свойства

Никель является химически малоактивным, пластичным и ковким переходным металлом, имеет яркий серебристо-белый цвет, при взаимодействии с воздухом поверхность имеет свойство покрываться тонкой оксидной плёнкой.

Суточная потребность в никеле

Суточная потребность в никеле до сих пор чётко не определена, медики и учёные сходятся на том, что в среднем здоровому взрослому человеку достаточно 100-300 мкг в день, которые он получает с пищей.

Продукты питания богатые никелем

Никель содержится во многих продуктах, подарком для сладкоежек является тот факт, что шоколад содержит довольно много никеля. Основными поставщиками микроэлемента являются: злаки и крупы (гречка, рис, овсянка, ячневая крупа), орехи, семечки, бобовые (фасоль и чечевица), чай, зёрна какао, молоко и молочные продукты, субпродукты, зелёные листовые овощи (шпинат, щавель, салат), яйца, зелень, рыба и морепродукты, абрикосы, вишня, чёрная смородина, морковь и лук.

Полезные свойства никеля и его влияние на организм

Никель принимает участие в активации ферментов, кроветворении и формировании носителей генной информации, продлевает и усиливает действие инсулина, оказывает благотворное влияние на деятельность почек и гипофиза, оказывает помощь клеточным мембранам и нуклеиновым кислотам в сохранении их структуры, поставляет кислород в клетки тканей, имеет свойство снижать артериальное давление.

Признаки нехватки никеля

Дефицит никеля встречается крайне редко, обычно характеризуется замедлением роста у детей, повышением уровня сахара в крови и снижением уровня гемоглобина (calorizator). Так как препараты никеля токсичны, самолечением заниматься крайне опасно для здоровья, поэтому при выявлении данных симптомов необходимо пройти медицинское обследование в обязательном порядке.

Признаки избытка никеля

Основными признаками переизбытка никеля в организме человека являются дерматиты и воспаления кожных покровов, конъюнктивит, сбои в деятельности нервной, сердечно-сосудистой системы и пищеварительного тракта, дистрофия почек и печени, кератиты.

Применение никеля в жизни

Никель находит широкое применение в промышленности и других областях, он является основой большинства суперсплавов, с его помощью проводят никелирование для защиты поверхности металлов от коррозии, его используют в химической и радиационных технологиях, производстве аккумуляторов, медицине, музыкальной промышленности и в монетном деле.

Нахождение в природе

Никель достаточно распространённый элемент, содержится в земной коре в связанном виде, самородный металл встречается в железных метеоритах. Месторождения никеля имеются в Канаде, России, ЮАР, Кубе, Украине.

Автор: Виктория Н. (специально для Calorizator.ru)
Копирование данной статьи целиком или частично запрещено.

Никель, хим. состав и применение никелевых и медно-никелевых сплавов

Никель — высокопрочный пластичный металл серебристо-белого цвета. Был открыт в 1751 году шведским химиком Акселем Кронстедтом. В периодической системе Д. И. Менделеева имеет номер 28 и символ Ni, атомная масса равна 58,71.

Никель — твердый и вязкий металл с ферромагнитными свойствами. Он хорошо поддается сварке, ковке, штамповке и прокатке. Отличается устойчивостью в химически активных средах, в том числе в щелочах. В атмосферных условиях покрывается защитной оксидной пленкой и не окисляется даже при температуре 800 ⁰С.

Физические свойства никеля:

  • Температура плавления — 1455 ⁰С.
  • Скрытая теплота плавления — 73 кал/г.
  • Температура кипения — 2913 ⁰С.
  • Скрытая теплота испарения — 1450 кал/г.
  • Плотность — 8800 кг/м3.
  • Предел прочности при растяжении отожженного никеля — 4000−5000 МПа.
  • Предел прочности при растяжении деформированного никеля — 7500−9000 МПа.
  • Предел текучести отожженного никеля — кГ/мм2.
  • Предел текучести деформированного никеля — 70 кГ/мм2.
  • Теплопроводность — 90,9 Вт/(м*К).
  • Удельное электросопротивление — 0,0684 мкОм*м.
  • Модуль упругости — 196−210 ГПа.
  • Модуль нормальной упругости — 20000 кГ/мм2.
  • Модуль сдвига — 7300 кГ/мм2.
  • Твердость литого никеля — 60−70 кГ/мм2.
  • Твердость отожженного никеля 70−90 кГ/мм2.
  • Твердость деформированного никеля — 200 кГ/мм2.

Благодаря своим свойствам никель в чистом виде и особенно в сплавах широко применяется в различных областях промышленности. Металл образует твердые растворы со многими элементами.

Марки и химический состав никеля

Согласно ГОСТ 849-2008, выпускается 7 марок никеля — Н0, Н1Ау, Н1у, Н1, Н2, Н3 и Н4. В их составе содержится от 97,6 до 99,99 % никеля в сумме с небольшим процентом кобальта (Co) — от 0,005 до 0,7 %. Остальную массу занимают примеси:

  • Углерод (C) — есть во всех марках никеля.
  • Магний (Mg).
  • Алюминий (Al).
  • Кремний (Si).
  • Фосфор (P).
  • Сера (S) — есть во всех марках.
  • Марганец (Mn).
  • Железо (Fe).
  • Медь (Cu) — есть во всех марках.
  • Цинк (Zn).
  • Мышьяк (As)
  • Кадмий Cd).
  • Олово (Sn).
  • Сурьма (Sb).
  • Свинец (Pb).
  • Висмут (Bi).

Химический состав никеля

Подробный химический состав никеля разных марок представлен в таблице ниже.

Марка Химический состав, %
Ni и co, не менее В том числе Co, не более Примеси, не более
C Mg Al Si P S Mn Fe Cu Zn As Cd Sn
Sb
Pb Bi
H0 99,99 0,005 0,005 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,001 0,0005 0,0005 0,0003 0,0003 0,0003 0,0003 0,0001
h2Ay 99,95 0,1 0,001 0,001 0,002 0,001 0,001 0,01 0,1 0,001 0,001 0,0006 0,0005 0,0005 0,0005 0,0001
h2y 99,95 0,1 0,01 0,001 0,002 0,001 0,001 0,01 0,015 0,001 0,001 0,0005 0,0005 0,0005 0,0005 0,0003
h2 99,93 0,1 0,01 0,001 0,002 0,001 0,001 0,02 0,02 0,001 0,001 0,001 0,001 0,0001 0,001 0,0006
h3 99,8 0,15 0,02 0,002 0,003 0,04 0,04 0,005 0,1
h4 98,6 0,7 0,1 0,03 0,6
h5 97,6 0,7 0,15 0,04 1,0

Влияние примесей на свойства металла

Сера является одной из наиболее вредных примесей. Она придает никелю краcноломкость, из-за которой ухудшаются свойства металла при обработке давлением. Чтобы нейтрализовать действие серы, добавляют марганец и/или магний.

Углерод в количестве до 0,1 % никак не влияет на свойства металла, однако при большем содержании этого элемента он выпадает из твердого раствора при отжиге и снижает пластичность холодного никеля.

При содержании висмута и свинца в количестве от 0,002 % становится невозможной горячая обработка металла: так как эти элементы почти не растворяютися в твердом состоянии, из-за них разрушается слиток. Поэтому во всех марках никеля количество свинца и висмута ограничено 0,001 и 0,0006 % соответственно.

Алюминий увеличивает электросопротивление никеля. Данный элемент содержится в самой чистой марке — Н0. Кроме того, широко применяются сплавы никеля и алюминия: у них высокая жаропрочность и устойчивость к коррозии.

Железо не оказывает ощутимого влияния на свойства никеля. Кремний раскисляет основной металл, благодаря чему благоприятно влияет на его литейные свойства, химическую стойкость и прочность.

Кобальт повышает жаростойкость, жаропрочность и прочность никеля, а марганец оказывает положительные влияние на технологические и механические свойства металла, улучшает его электросопротивление.

Применение никеля в чистом виде

Для защиты металлов от коррозии

Для этого используются покрытия, которые наносятся гальванопластикой или плакированием. Первый способ применяют для алюминия, чугуна, магния и цинка, второй — для нелегированных сталей и железа.

Для производства металлических изделий, которые имеют постоянные формы и высокую коррозионную устойчивость

Никель в чистом виде стоит дороже, чем железо и сталь, поэтому используется в тех случаях, когда невозможно обойтись другим металлом с никелевым покрытием. Из никеля производят тигли и котлы, цистерны для перевозки и плавления щелочей, хранения реагентов, пищевых продуктов и др. В никелевых трубах изготавливают конденсаты. Инструменты их этого металла устойчивы при взаимодействии с агрессивными элементами, поэтому они практически незаменимы в химических лабораториях и медицинских центрах. Различные приборы из никеля применяются для телевидения, радиолокации и атомной техники.

Применение никеля

В качестве катализаторов и фильтров в химической промышленности

Никель обладает такими же каталитическими свойствами, что и палладий, но стоит значительно меньше, поэтому широко используется в виде порошка в реакциях гидрирования спиртов, непредельных и ароматических углеводородов, циклических альдегидов.

Порошок чистого никеля также подходит для создания пористых фильтров, которые используются для фильтрования различных продуктов: топлива, газов и др.

Для механических прерывателей нейтронного пучка.

Свойства никеля позволяют получать нейтронные импульсы с большой энергией, в результате чего пластины из этого металла применяются в ядерной физике.

Также никель используют при изготовлении электродов в щелочных аккумуляторах.

Никелевые сплавы

В сплавах никель (вместе с кобальтом) соединяется с алюминием, кремнием, марганцем, железом и хромом. Согласно ГОСТ 492-73, в них допускается не более 1,4 % примесей. В составе примесей содержится незначительная доля магния, свинца, серы, углерода, висмута, мышьяка, сурьмы, кадмия, олова. Отдельной группой выступают медно-никелевые сплавы.

Все сплавы никеля разделяются на четыре большие группы:

  • Конструкционные. Особенность этих сплавов — высокие механические свойства и повышенная устойчивость к коррозии. К этой группе относятся прежде всего сплавы на медно-никелевой основе, такие как мельхиор, монель, ней­зильбер. Они хорошо свариваются и поддаются обработке в холодном и горячем виде.
  • Жаростойкие. Основными элементами этих сплавов являются никель и железо. Они отличаются высокой жаростойкостью и жаропрочностью, применяются преимущественно для производства электронагревательных приборов. Их также используют для изготовления малогабаритных тензорезисторов и потенциометрических обмоток.
  • Термоэлектродные. Это сплавы с высоким удельным сопротивлением и большой электродвижущей силой. Их используют для производства компенсационных проводов, термопар, пре­цизионных приборов. К данной группе относятся некоторые никелевые (хромель, алюмель) и медно-никелевые (константан, копель, манганин) сплавы.
  • Сплавы с особыми свойствами. В эту группу входят сплавы, которые находят особое применение благодаря своим уникальным свойствам. Инвар — сплав никеля и железа, который отличается повышенной упругостью. Он применяется для изготовления эталонов длины, мерных геодезических проволок, несущих конструкций лазеров, деталей часовых механизмов и др. Пермаллой — также сплав никеля и железа, обладающий высокой проницаемостью в магнитных полях. Его используют для производства магнитопроводов, деталей реле, сердечников трансформаторов и др.

Сплав с кремнием

Кремнистый никель НК 0,2 содержит 99,4 % никеля (с кобальтом), 0,15 — 0,25 % кремния и до 0,45 % примесей. Из этого сплава изготавливаются ленты и полосы, которые находят применения в электротехнике: из них делают детали приборов и устройств.

Сплавы никеля и марганца

Марганцевый никель выпускается четырех марок — НМц1, НМц2, НМц2,5 и НМц5. Из сплава НМц1 производят сетки управления ртутных выпрямителей. НМц2 находит применение в электронных лампах повышенной прочности, используется для держателей сеток и др. Проволока из сплавов НМц2,5 и НМц5 используется в свечах двигателей — автомобильных, авиационных и тракторных. НМц5 также применяется для радиоламп.

Алюмель

Алюмель (НМцАК 2-2-1) — сплав никеля, алюминия, марганца и кремния. Он содержит 1,60−2,40 % алюминия, 1,80−2,70 % марганца, 0,85−1,50 кремния, до 0,7 % примесей, остальная часть — никель с кобальтом (кобальта — до 1,2 %). Алюмель применяется для изготовления термопар, которые используются для измерения температуры в различных областях промышленности, системах автоматики, а также в медицине и научных исследованиях.

Хромели

Хромель Т (НХ 9,5) — сплав никеля и 9-10 % хрома с содержанием примесей в количестве не более 1,4 %. Из этого сплава изготавливают проволоку для термопар.

Хромель К (НХ 9) содержит 8,5−10 % хрома и до 1,4 % примесей. Проволока из данного сплава используется для компенсационных проводов.

В состав хромеля ТМ (НХМ 9,5) входит 9−10 % хрома, 0,1−0,6 % кремния и до 0,15 % примесей. Сплав используется для изготовления термопар.

Хромель КМ (НХМ 9) — это сплав никеля, 8,5−10 % хрома, 0,1−0,6 % кремния с содержанием не более 0,15 % примесей. Применяется для изготовления проволоки компенсационных проводов.

Медно-никелевые сплавы

Это сплавы на медной основе, при этом никель является в них основным легирующим элементом. Смешение никеля и меди гарантирует высокую прочность, электросопротивление и устойчивость к коррозии.

В качестве элементов медно-никелевых сплавов могут также выступать алюминий, железо, марганец, цинк, титан, свинец, кремний. Согласно ГОСТ 492-73, допускается не более 2 % примесей, для некоторых сплавов — не более 0,15 %. Наиболее распространенные медно-никелевые сплавы — это копель, константан, мельхиор, нейзильбер, куниаль, манганин, монель.

Копель

Копель (МНМц43-0,5) содержит 0,1−1 % марганца, 42,5−44 % никеля, до 0,6 % примесей, остальная масса приходится на медь. Сплав имеет большую термоэлектродвижущую силу, выпускается в виде проволоки, которая применяется для компенсационных проводов, а также для изготовления термопар.

Константан

Константан (МНМц40-1,5) — термостабильный сплав с высоким удельным электросопротивлением. Он состоит из 1-2 % марганца, 39-41 % никеля, примерно 59 % меди и не более 0,9 % примесей. Константан выпускается в виде проволоки, полос и лент. Используется для изготовления приборов высокого класса точности, реостатов и электронагревательных элементов, компенсационных проводов и термопар.

Мельхиор

Мельхиор (МНЖМц30-1-1) — конструкционный медно-никелевый сплав с содержанием 18-22 % никеля, примерно 80 % меди и не боле 0,6 % примесей. Некоторые разновидности мельхиора содержат железо и марганец. Он обладает высокой пластичностью и коррозионной стойкостью. Хорошо поддается обработке давлением в холодном и горячем виде — штампуется, режется, чеканится. Его легко паять и полировать. Мельхиор имеет серебристый оттенок, выпускается в виде труб, полос и ленты. Применяется для изготовления монет, недорогих ювелирных украшений и посуды. Из него делают трубные доски кондиционеров, конденсаторные трубы. Сплав также используется в приборостроении.

Нейзильбер

Название нейзильбер (МНЦ15-20) переводится с немецкого как «новое серебро». Такое название он получил из-за того, что напоминает драгоценный металл, но при этом он стоит намного дешевле. Из него делают столовые приборы, которые серебрятся после отливки. В промышленности нейзильбер применяется для производства паровой и водяной арматуры, медицинских инструментов и деталей точных приборов. Из него производят ордены и медали, ювелирные изделия, гитарные лады. Нейзильбер также используется для изготовления финифти и филиграни. Сплав содержит 18-22 % цинка, 13,5-16,5 % никеля, около 38 % меди и не более 0,9 % примесей. Выпускается в виде ленты, труб, полос, проволоки и прутков.

Куниаль

Куниаль — дисперсионно-твердеющий сплав меди, никеля и алюминия. Куниаль А (МНА13-3) содержит 2,3-3 % алюминия, 12-15 % никеля, около 80 % меди и не более 1,9% примесей. Куниаль Б (МНА6-1,5) — 1,2-1,8 % алюминия, 5,5-6,5 % никеля, около 90 % меди и не более 1,1 % примесей.

Куниаль А выпускается в виде прутков, применяется в машиностроении для изделий повышенной прочности. Из куниаля Б изготавливают полосы, которые используются в электротехнике для пружин и других изделий.

Манганин

Манганин (МНМц3-12) — термостабильный сплав, содержащий 11,5-13,5 % марганца, 2,5-3,5 % никеля, около 85 % меди и не более 0,9 % примесей. Он выпускается в виде листов и проволоки, находит применение в измерительной технике: из манганина делают шунты, катушки, добавочные сопротивления, магазины сопротивлений и др.

Монель

Монель (НМЖМц28-2,5-1,5) — сплав на основе никеля, который содержит 2-3 % железа, 1,2-1,8 % марганца, 27-29 % меди и не более 0,6 % примесей. Выпускается в виде лент, полос, листов и проволоки. Применяется в различных сферах промышленности: медицинской, химической, нефтяной, судо- и авиастроительной. Из него делают дрели, музыкальные инструменты, оправы для очков, различные антикоррозионные детали.

Никель Ренея — Википедия

Материал из Википедии — свободной энциклопедии

Никель Ренея, иначе «скелетный никель» — твёрдый микрокристаллический пористый никелевый катализатор, используемый во многих химико-технологических процессах; способ его приготовления предложил в 1926 году американский инженер Мюррей Реней. Представляет собой серый высокодисперсный порошок (размер частиц обычно 400—800 нм), содержащий, помимо никеля, некоторое количество алюминия (до 15 масс.%) и насыщенный водородом (до 33 ат.%). Частицы порошка имеют большое количество пор, вследствие чего удельная поверхность составляет около 100 м²/г. Никель Ренея пирофорен, то есть самовоспламеняется на воздухе при комнатной температуре, поэтому его хранят под слоем воды, спирта либо бензина.

Никель Ренея широко применяется как катализатор разнообразных процессов гидрирования или восстановления водородом органических соединений (например, гидрирования аренов, алкенов, растительных масел и т. п.). Ускоряет также и некоторые процессы окисления кислородом воздуха. Структурная и тепловая стабильность никеля Ренея позволяет использовать его в широком диапазоне условий проведения реакции; в лабораторной практике возможно его многократное использование. Никель Ренея каталитически значительно менее активен, чем металлы платиновой группы, но значительно дешевле последних.

Получают никель Ренея сплавлением при 1200 °C никеля с алюминием (20-50 % Ni; иногда в сплав добавляются незначительные количества цинка или хрома), после чего размолотый сплав для удаления алюминия обрабатывают горячим раствором гидроксида натрия с концентрацией 10 — 35 %; остаток промывают водой в атмосфере водорода. Лежащий в основе приготовления никеля Ренея принцип используется и для получения каталитически активных форм других металлов — кобальта, меди, железа и т. д.

  • Некрасов Б. В. Основы общей химии. — М.: Химия, 1973. — Т. 2. — С. 340.
  • Реми Г. Курс неорганической химии. — М.: Мир, 1974. — Т. 2. — С. 703.

Вред никеля — отравление никелем и аллергия на никель

Никель является серебристо — белым, пластичным металлом, и сам по себе он химически проявляет невысокую активность. Это объясняет его высокую коррозионную стойкость. Никель очень широко применяется в народном хозяйстве, распространен в природе и является незаменимым микроэлементом, входящим в состав человеческого организма. Но, попадая на кожу и в органы дыхания, как в чистом виде, так и в составе соединений, никель несет вред для человека, он способен вызывать острые и хронические отравления.

Как применяется никель, зачем он нужен в организме, какими соединениями и при каких условиях можно отравиться, каковы симптомы отравления и что делать при подозрении на интоксикацию никелем и его соединениями? Какова польза и вред никеля?

Применение никеля и источники загрязнения окружающей среды

Простейшим примером является никелирование металлических деталей, сантехники. Этот металл входит во многие стали и сплавы, применяется в химической промышленности как катализатор, но одним из наиболее важных сфер применения металла является гальваническая техника и химическое машиностроение. На фото ниже – электролизный цех.

На заводе по производству никеля

В аэрокосмической промышленности широко применяются жаропрочные материалы на основе никеля, металлургия использует такие хромоникелевые стали и сплавы, как константан, нейзильбер, нихром, пермаллой, инвар и другие. Каждый из них обладает своими уникальными свойствами. Это вещество широко применяется в производстве самых разных источников постоянного тока: в аккумуляторной промышленности. Даже для производства струн щипковых инструментов, а точнее, для их обмотки требуются сталь с повышенным содержанием никеля.

Никелированная посуда

В быту нас окружает никелированная посуда (никелирование, которое проводится гальваническим методом и предохраняет материалы от коррозии), он применяется для покрытия ножей, ложек и вилок, используется в производстве зубных протезов и коронок.

Никель способен загрязнять воду, особенно в сточной зоне химических производств, заводов по производству каучука и горно-обогатительных комбинатов. Практически 97% выброса металла в атмосферу приходится на предприятия отечественного концерна «Норильский никель» в таких населенных пунктах, как Норильск, Мончегорск, Апатиты. Он попадает в воздух как отход при сжигании различных сортов каменного угля.

Смотрите также никелевый лом.

Никель в организме человека

Жизненно необходим этот металл для правильного синтеза наследственного материала (ДНК). Он входит в состав ферментов, которые контролируют процессы клеточного деления. Он необходим для создания форменных элементов крови, незаменим в жировом обмене и процессах клеточного дыхания. Без никеля, повышенное количество которого содержатся в поджелудочной железе, невозможен правильный обмен углеводов, поскольку металл повышает активность инсулина.

В какой пище встречается никель

Суточная потребность человека в этом микроэлементе полностью обеспечивается его содержанием в мясе и рыбе, в хлебобулочных изделиях, в овощах и фруктах, молочных продуктах и ягодах.

Как и чем можно отравиться?

Вред никеля состоит не только в том, что его количество в значительной степени превышает необходимые и очень малые дозировки. Токсичность связана с попаданием в организм, прежде всего, его свободных ионов, имеющих положительную валентность (Ni 2+) Они в более высокой степени связываются тканями организма, и проявляют более высокую токсичность и канцерогенность, чем его молекулярные и комплексные соединения. Токсическое воздействие никеля на организм человека реализуется чаще всего посредством:

  • вдыхания паров тетракарбонила никеля (высокотоксичного летучего соединения)
  • длительного контакта металлического вещества с кожей (в том числе, ношения украшений).

Металлический никель, связанный кристаллической решеткой стали или сплава, не контактирующий непосредственно с человеческим телом, который хранится на складе, вреда здоровью не причиняет, при соблюдении основных правил техники безопасности, и организации мест хранения.

Симптомы и признаки острого и хронического отравления никелем

Наиболее простым и относительно безобидным видом отравления является аллергия на никель. Дерматологи знают, что этот металл является одной из самых часто возникающих причин контактного дерматита аллергического типа. Даже 2008 год прошел под эгидой никеля, который американским обществом изучения контактного дерматита был признан «аллергеном года», что говорит о важности проблемы. Именно за счёт аллергических свойств этого металла в странах Евросоюза законодательно ограничены предельно допустимые концентрации никеля в тех металлических изделиях, которые непосредственно контактируют с человеческой кожей. Это различные браслеты, брелки, ключи, дверные ручки, заклепки и «молнии», оправы для очков и прочие изделия. Дерматит бывает первичным и вторичным (системным).

Никелевый дерматит

Часто встречается первичная разновидность контактного дерматита. В месте длительного соприкосновения этого металла с кожей человека вначале возникает эритема, или очаги покраснения. Затем появляется огрубение кожного рисунка, возникает уплотнение кожи. Такой симптом в дерматологии называется лихенизацией, или лихенификацией. Затем появляются бугорки, или папулы. Эти симптомы аллергии на никель похожи на любой контактный дерматит, и очень важно выявить связь жалоб с металлическими деталями, натирающими кожу.

Симптомы аллергии на никель

Можно легко выяснить причину дерматита, если окажется, что это ограниченное поражение в точности соответствует местам натирания кожи металлическими предметами. Это могут быть пряжки ремней, ювелирные украшения.

Гораздо более тяжелой является общая аллергическая реакция человеческого организма на поступление в него никеля, причём металл попадает внутрь через органы дыхания, при введении различных никельсодержащих металлических имплантатов, и такой общий генерализованный дерматит можно расценивать как системную реакцию организма. Поэтому вред использования спирали из никеля в качестве внутриматочного контрацептива может значительно превысить ее пользу.

При вторичном дерматите сыпь располагается симметрично, может захватывать всё тело, или локализоваться на отдельных участках, на локтевых сгибах, на лице, под коленками. Как и любой другой аллергический дерматит, вначале возникает сенсибилизация организма при первичном контакте с аллергеном, а затем, при повторной встрече, развиваются симптомы диффузного токсического дерматита. Общая схема симптомов никелевой аллергии показана ниже.

При длительном наблюдении рабочих — никелировщиков, отмечена экзема. На коже располагаются различные папулы с элементами отёков, пятна, пузырьки, хроническое мокнутие. По данным статистики, более 10% всех профессиональных поражений кожных покровов составляют никелевые дерматиты, а у сотрудников электролизных цехов частота никелевых поражений кожи доходит до 15%. Однако, встречаются и более редкие случаи никелевого дерматита. Например, у кассиров банков, которые по долгу службы часто считали монеты, изготовленные из сплавов этого металла, возникали симптомы контактного дерматита на пальцах.

Дерматит на никель

Осторожно: карбонил никеля!

Тетракарбонил никеля является одним из самых опасных его соединений, и используется в химической промышленности как катализатор при синтезе различных органических веществ. Также он встречается в дыме сигарет, его концентрация составляет около 3 микрограмм на одну сигарету.

Его токсическое действие проявляется в виде очень сильного раздражения мелких бронхов, он способен вызвать пневмонию и отёк легких. Тетракарбонил обладает нейротоксическим действием, и если концентрация этого соединения в окружающем воздухе становится опасной для жизни, то уже через несколько часов могут развиться характерные симптомы отравления.

Никель карбонил или карбонил никеля

Вначале появляется боль в груди, прогрессирующая одышка, кашель, тошнота и слабость, головная боль. В том случае, если отравление тяжёлое, и продолжается на протяжении нескольких часов, то появляются симптомы поражения сердца, или миокардита, эпилептические припадки, острая дыхательная недостаточность. Если немедленно не прекратить поступление яда в организм, то возможно развитие диффузного поражения легких и отёка головного мозга, который чаще всего, и является причиной смерти.

Водные отравления никелем

В том случае, если человек употребляет воду, в которой находятся растворимые соли никеля, то развиваются симптомы, напоминающие острые кишечные инфекции, — возникает слабость, понос, тошнота и рвота – признаки отравления никелем. Однако при поражениях солями, развиваются еще и специфические нарушения в легких, которые проявляются одышкой и кашлем, не свойственными для острой кишечной инфекции. При полном прекращении поступления отравляющих веществ в организм такие симптомы могут сохраняться несколько суток. Вред посуды из никеля особенно велик, если в ней находятся кислые продукты – например, уксус, и хранится там долгое время.

Канцерогенное действие никеля

Действие никеля становится наиболее опасным при длительном влиянии на организм. Избыток никеля влияет на нуклеиновые кислоты, и канцерогенное действие, чаще всего, проявляется раком легких и бронхов.

Также у работников, связанных на производстве с высокими концентрациями этого вещества, возникает повышенный риск рака носа, придаточных пазух черепа и других органов, непосредственно расположенных рядом с верхними и нижними дыхательными путями. Так, исторически, до введения защиты на производстве, у работающих с никелем частота возникновения злокачественных новообразований легких была в пять раз выше, а раком придаточных пазух черепа — более чем в 100 раз превышала среднюю частоту возникновения опухолей в популяции.

Известны случаи развития злокачественных новообразований уже через 5 лет после работы на никелировочном производстве, при условии постоянного вдыхания аэрозоля, содержащего соли никеля. Также значительно повышен риск возникновения рака желудка, особенно у рабочих на обжиге и восстановлении никелево-сульфидных руд.

Неотложная помощь

Любая неотложная помощь сводится к полному устранению контакта отравившегося или с металлическим никелем, или с его парами, или с растворимыми соединениями. В случае отравления карбонилом никеля дополнительно нужно полностью снять всю одежду и механически, с помощью мыла и воды удалить его с кожных покровов. При отравлении карбонилом дают кислород, вводят симптоматические препараты, глюкокортикоидные гормоны, бронхолитики, или даже переводят на ИВЛ.

В последнее время используется при тяжелых отравлениях диэтилдитиокарбамат натрия, применяются такие средства, как дисульфирам. В случае контактного дерматита используются обычные методы лечения, связанные с применением антиаллергических препаратов, местных глюкокортикоидных гормонов. Самое главное, как лечить аллергию на никель — это первым делом избавиться от контакта с металлическими предметами.

Профилактика

На современных производствах, где существует надлежащий контроль и охрана труда, любое токсическое действие никеля и его соединений можно нивелировать, используя изолирующие респираторы, фильтрующие шланговые противогазы и спецодежду. Работниками должны применяться специальные пасты и мази, кожа рук должна обрабатываться особыми соединениями, но самое главное, что можно сделать — это устранить ручной труд, особенно загрузку и выгрузку деталей из электролизных ванн, и как можно шире применять механизацию на производстве.

Очень важным средством профилактики хронических интоксикаций является проведение периодических медицинских осмотров, а также использование специальных накожных тестовых проб соединениями никеля. В качестве скрининговой диагностики обязательно должна проводиться рентгенография носовых пазух, ежегодные консультации онколога на производстве.

Документальный фильм «Никель»

О вреде никеля и его опасном производстве

Железо-никелевый аккумулятор — Википедия

Желе́зо-ни́келевый аккумуля́тор — это вторичный химический источник тока, в котором железо — анод, электролитом является водный раствор гидроксида натрия или калия (с добавками гидроксида лития), катод — гидрат окиси никеля(III).

Активный материал содержится в никелированных стальных трубках или перфорированных карманах. С точки зрения стоимости и удельной энергоемкости, они близки к литий-ионным аккумуляторам, а с точки зрения саморазряда, эффективности и напряжения — к NiMH аккумуляторам. Это достаточно выносливые аккумуляторы, стойкие к грубому обращению (перезаряд, глубокий разряд, короткое замыкание и термические удары) и имеющие очень длинный срок службы.

Их использование стало снижаться с момента остановки производства из-за пожара на заводе/лаборатории Эдисона в 1914 году[1]проверить ссылку, по причине плохих показателей работы батарей при низких температурах, плохого удержания заряда (как у NiMH аккумуляторов) и высокой стоимости производства, сравнимой с лучшими герметизированными свинцово-кислотными аккумуляторами и до 1/2 стоимости NiMH аккумуляторов. Однако в связи с ростом стоимости свинца[2] в последние годы, цена свинцовых аккумуляторов значительно поднялась, и цены практически сравнялись.[3]

При сравнении аккумуляторов со свинцово-кислотными следует помнить, что допустимый эксплуатационный разряд свинцово-кислотного аккумулятора значительно меньше, чем теоретическая полная ёмкость, а железоникелевого — очень близок к ней. Поэтому реальная эксплуатационная ёмкость железоникелевого аккумулятора, при равной теоретической полной ёмкости, может быть в несколько раз (в зависимости от режима) больше, чем у свинцово-кислотного.

Способность этих аккумуляторов выносить частые циклы разряд/заряд связана с низкой растворимостью реагентов в электролите. Длительное формирование металлического железа в процессе зарядки обусловлено низкой растворимостью Fe3O4. Длительный процесс образования кристаллов железа сохраняет электроды, но также лимитирует скорость работы: данные аккумуляторы заряжаются медленно и так же медленно разряжаются.

Основные факторы ограничивающие долговечность железо-никелевых аккумуляторов — выгорание графита токопроводящей добавки из-за выделения кислорода при разложении воды, коррозия никелированных железных корпусов и ламелей с последующим высыпанием активных масс в шлам, осаждение железа на сепараторах и увеличение саморазряда. Железо-никелевые элементы производства заводов Эдисона в начале 19хх годов имели трубчатую конструкцию положительного окисно-никелевого электрода с токопроводящей добавкой никелевых лепестков вместо графита и улучшенную технологию никелирования железных конструкционных материалов (запекание многослойного никелевого покрытия, полученого из водного раствора никелевой соли, в печах с водородной защитной атмосферой). При этом назначенный срок службы составлял 100 лет и рекомендованный интервал замены электролита — один раз в 5..10 лет. В более дешевых конструкциях железо-никелевых аккумуляторов со сроком службы в начальные десятки лет из-за выгорания графитной токопроводящей добавки в процессе эксплуатации элемента быстрее загрязняется электролит карбонатами и уменьшаются интервалы между заменами электролита (рекомендованный интервал замены электролита в исполнениях никелевых аккумуляторов с графитом — от 100 циклов или 1 раз в год). Также после выгорания существенного количества графита ухудшается отдаваемая емкость и увеличивается эквивалентное внутреннее сопротивление элемента из-за ухудшения контакта активной массы с электродами. Окончательное разрушение аккумулятора и полный выход из строя происходят при сквозной коррозии конструкционных элементов (ламелей и/или стального корпуса) из-за ограниченного качества никелирования дешевых вариантов исполнения аккумулятора.

Никель-железные аккумуляторы долгое время использовались в европейской горной промышленности благодаря их способности выносить вибрацию, высокие температуры и другие стрессовые воздействия. Повторно к ним возрос интерес в солнечных и ветрогенераторах, современном электротранспорте.

Вальдемар Юнгнер[править | править код]

Шведский изобретатель Вальдемар Юнгнер (Waldemar Jungner, в английском произношении — Джангнер) был изобретателем никель-кадмиевого аккумулятора в 1899. Юнгнер экспериментировал с железом в качестве замены кадмию, включая вариант со 100 % железом. Юнгнер обнаружил, что главным преимуществом перед никель-кадмиевой схемой была стоимость, но из-за более низкой эффективности зарядки и более высокого газообразования никель-железная технология была признана неполноценной и заброшена. Юнгнер получил несколько патентов на железную версию его аккумулятора (шведские патенты № 8.558/1897, 10.177/1899, 11.132/1899, 11.487/1899 и германский патент № 110.210/1899).

Томас Эдисон[править | править код]

Железо-никелевый аккумулятор был независимо изобретён Томасом Эдисоном в 1901 и использовался как источник энергии для электромобилей, таких как «Detroit Electric» и «Baker Electric». Эдисон заявлял, что никель-железные батареи будут «гораздо лучше аккумуляторов, использующих свинцовые пластины и кислоту». Работа Юнгнера была практически неизвестна в США вплоть до 40-х годов, когда там было запущено производство никель-кадмиевых аккумуляторов. 50-вольтовая никель-железная батарея была основным источником питания в немецкой ракете «Фау-2» (совместно с двумя 16-вольтовыми аккумуляторами питания 4 гироскопов, в уменьшенной версии использовалась в крылатой ракете «Фау-1»).

  • Запасённая энергия/масса: 20-50[4] Вт·ч/кг
  • Запасённая энергия/объем: 350[5] Вт·ч/л
  • Мощность/масса: 100[4] Вт/кг
  • Эффективность: 65%[6]
  • Стоимость: 1,5[5] — 6,6[4] Вт·ч/US$
  • Саморазряд: 20%[4][5] — 40 %[4]/месяц
  • Срок службы: 30[6] — 50 лет[5][7]
  • Количество рабочих циклов: Многократный глубокий разряд на срок службы заметно не влияет.[5][6]
  • Напряжение: 1,2 В[4]
  • Рабочий диапазон температур: от −40 до +46 °C[8]

Половина реакции на катоде:

2NiOOH+2h3O+2e−⇌2Ni(OH)2+2OH−{\displaystyle {\mathsf {2NiOOH\;+\;2H_{2}O\;+\;2e^{-}\quad \rightleftharpoons \quad 2Ni(OH)_{2}+2OH^{-}}}}

и на аноде:

Fe+2OH−⇌Fe(OH)2+2e−.{\displaystyle {\mathsf {Fe+2OH^{-}\quad \rightleftharpoons \quad Fe(OH)_{2}+2e^{-}}}.}

(При разряде реакция протекает слева направо, при заряде справа налево.) [1]

В связи со значением электрохимического потенциала железа в рабочем щелочном растворе при хранении заряженого аккумулятора происходит выделение водорода и саморазряд железного электрода. Также из-за малого значения перенапряжения выделения водорода на железном электроде при заряде примерно половина прошедшего через аккумулятор электрического заряда тратится на выделение водорода даже при рекомендованых положительных рабочих температурах. Это основной фактор ограничивающий энергетическую эффективность железо-никелевого аккумулятора. При понижении температуры ниже нуля зарядная эффективность железного электрода еще больше ухудшается и примерно при ниже −20 °C аккумулятор перестает заряжаться.

Аккумулятор Эдисона производился с 1903 до 1972 компанией «Edison Battery Storage Company» в East Orange, штат Нью-Джерси. Они были достаточно прибыльными для компании. В 1972 компания была продана корпорации «Exide Battery», которая прекратила производство в 1975.

В настоящее время (2012) железо-никелевые аккумуляторы производятся в США, Китае, Венгрии, России и Украине.

Железо-никелевые аккумуляторы не содержат кадмия и свинца, что делает их более безопасными для окружающей среды, чем никель-кадмиевые и свинцово-кислотные аккумуляторы.

Никель-кадмиевый аккумулятор — Википедия

Никель-кадмиевые аккумуляторы Авиационная бортовая никель-кадмиевая аккумуляторная батарея 20НКБН-25-У3

Никель-ка́дмиевый аккумуля́тор (NiCd) — вторичный химический источник тока, в котором катодом является гидрат закиси никеля Ni(OH)2 с графитовым порошком (около 5–8%), электролитом — гидроксид калия KOH плотностью 1,19–1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21–25%), анодом — гидрат закиси кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка). ЭДС никель-кадмиевого аккумулятора — около 1,37 В, удельная энергия — порядка 45–65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 900 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20–25 лет. Никель-кадмиевые аккумуляторы (NiCd) наряду с никель-солевыми аккумуляторами могут храниться разряженными, в отличие от никель-металл-гидридных (NiMH) и литий-ионных аккумуляторов (Li-ion), которые нужно хранить заряженными.

В 1899 году Вальдмар Юнгнер (Waldmar Jungner) из Швеции изобрёл никель-кадмиевый аккумулятор, в котором в качестве положительного электрода использовался никель, а в качестве отрицательного — кадмий. Двумя годами позже Эдисон (Edison) предложил альтернативную конструкцию, заменив кадмий железом. Из-за высокой (в сравнении с сухими или свинцово-кислотными аккумуляторами) стоимости, практическое применение никель-кадмиевых и никель-железных аккумуляторов было ограниченным.

После изобретения в 1932 году Шлехтом (Shlecht) и Акерманом (Ackermann) спрессованного анода было внедрено много усовершенствований, что привело к более высокому току нагрузки и повышенной долговечности. Хорошо известный сегодня герметичный никель-кадмиевый аккумулятор стал доступен только после изобретения Ньюманом (Neumann) полностью герметичного элемента в 1947 году.

Принцип действия никель-кадмиевых аккумуляторов основан на обратимом процессе:

2NiOOH + Cd + 2H2O ↔ 2Ni(OH)2 + Cd(OH)2 E0 = 1,37 В.

Никелевый электрод представляет собой пасту гидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод — стальную сетку с впрессованным в неё губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щелочи, который замерзает при -27°С[1]. Индивидуальные ячейки собирают в батареи, обладающие удельной энергией 20–35 Вт*ч/кг и имеющие большой ресурс — несколько тысяч зарядно-разрядных циклов.

  • Теоретическая энергоёмкость: 237 Вт·ч/кг
  • Удельная энергоёмкость: 45–65 Вт·ч/кг
  • Удельная энергоплотность: 50–150 Вт·ч/дм³
  • Удельная мощность: 150…500 Вт/кг
  • ЭДС = 1,37 В
  • Рабочее напряжение = 1,35…1,0 В
  • Нормальный ток зарядки = 0,1…1 C, где С — ёмкость
  • Срок службы: около 100—900 циклов заряда/разряда.
  • Саморазряд: 10% в месяц
  • Рабочая температура: −50…+40 °C

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.

Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100% ёмкости и 1% оставшейся ёмкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1-1.1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5–0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр. После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей, однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга.

Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до -40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.

Дисковые никель-кадмиевые аккумуляторы[править | править код]

Малогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,03 и зарядное устройство к ним. СССР, 1980-е годы Magnify-clip.pngМалогабаритные дисковые никель-кадмиевые аккумуляторы Д-0,26Д и Д-0,06 с зарядным устройством к аккумулятору Д-0,06

Никель-кадмиевые аккумуляторы выпускаются также в герметичном «таблеточном» конструктиве, наподобие батареек для часов. Электроды в таком аккумуляторе — две прессованные тонкие таблетки из активной массы, сложенные в пакет с сепаратором и плоской пружиной и завальцованные в никелированный стальной корпус диаметром с монету. Используются для питания различных, в основном маломощных, нагрузок (током C/10-C/5). Допускают только небольшие зарядные токи, не более С/10, так как внутри корпуса должна успевать происходить рекомбинация выделяющихся газов. Благодаря замкнутой конструкции допускают длительный перезаряд с непрерывной рекомбинацией и выделением избыточной энергии в виде тепла. Напряжение такого аккумулятора ниже, чем у негерметичного, и мало изменяется в процессе разряда вследствие избытка активной массы катода, создаваемого с целью ускорения рекомбинации кислорода.

Дисковые аккумуляторы (как правило, в батареях по 3 шт. в общей оболочке, типоразмера аналогичного советскому Д-0,06) широко применялись в персональных компьютерах выпуска 1980–90 годов, в частности PC-286/386 и ранних 486, для питания энергонезависимой памяти настроек (CMOS NVRAM) и часов реального времени при отключенном сетевом питании. Срок службы аккумуляторов в таком режиме составлял несколько лет, после чего батарея, в большинстве случаев — впаянная в материнскую плату, подлежала замене. С развитием CMOS-технологии и уменьшением потребляемой мощности NVRAM и RTC аккумуляторы были вытеснены одноразовыми литиевыми элементами ёмкостью порядка 200 мА·ч (CR2032 и др.), устанавливаемыми в гнёзда-защёлки и легко заменяемыми пользователем, с аналогичным сроком непрерывной работы.

В СССР дисковые аккумуляторы были практически единственными доступными в широкой продаже аккумуляторами (кроме автомобильных и, позднее, NiCd размера AA на 450 мА·ч). Помимо отдельных элементов, предлагалась 9-вольтовая батарея из семи аккумуляторов Д-0,1 с разъёмом, аналогичным «Кроне», которая, однако, входила в отсек питания не у всех радиоприёмников, для которых предназначалась. Поставлялись только простейшие зарядные устройства с током С/10, заряжавшие аккумулятор или батарею примерно за 14 часов (время контролировалось пользователем).

Название
аккумулятора
Диаметр,
мм
Высота,
мм
Напряжение,
В
Ёмкость,
А*ч
Рекомендуемый
ток разряда, мА
Применение
Д-0,03 11,6 5,5 1,2 0,03 3 фотоаппараты,
слуховые аппараты
Д-0,06 15,6 6,4 1,2 0,06 12 фотоаппараты, фотоэкспонометры,
слуховые аппараты, дозиметры
Д-0,125 20 6,6 1,2 0,125 12,5 аккумуляторные электрические фонарики[уточнить], миниатюрные радиоприёмники
Д-0,26 25,2 9,3 1,2 0,26 26 аккумуляторные электрические фонарики, фотовспышки, калькуляторы (Б3-36)
Д-0,55 34,6 9,8 1,2 0,55 55 прицел ночного видения 1ПН58 (блок из пяти Д-0.55С), фотовспышки, аккумуляторные электрические фонарики, калькуляторы (Б3-34)[1]
7Д-0,125 8,4 0,125 12,5 замена батарее Крона

NiCd-аккумуляторы производят множество фирм, в том числе такие крупные интернациональные компании, как GP Batteries, Samsung (под брендом Pleomax), VARTA, GAZ, Konnoc, Metabo, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, Ansmann и др. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), «Космос», ЗАО «Опытный завод НИИХИТ», НИИХИТ (АО).

Плавка продуктов утилизации NiCd-аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации — более дорогое, чем для утилизации свинцовых батарей.

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Федотов Г. А. Электрические и электронные устройства для фотографии. Л.: Энергоатомиздат, 1984.
  • ГОСТ 15596-82. Источники тока химические. Термины и определения.
  • Описание заряда NiCd-аккумуляторов.
  1. Под ред. акад. Ю.Д. Третьякова. Неограническая химия. Том 3. Химия переходных элементов.. — Москва: Академия, 2004. — 368 с. — ISBN 5-7695-1436-1.

Author: admin

Отправить ответ

avatar
  Подписаться  
Уведомление о